| 职称:副教授 |
系室:工业工程与物流系 | |
办公室:行政楼615 | |
电话: 021-67874149 | |
E-mail: jiangshujuns@sina.com | |
| 研究方向:物流优化与控制、非线性分析及应用、生产计划与调度、管理决策等 | |
个人简介: 2010年毕业于东北大学物流优化与控制专业。2010年5月-2020年10月,在江西财经大学信息管理学院物流与供应链、管理决策研究所工作;2020年11月至今,在上海工程技术大学工业工程与物流系从事科研和教学工作。2014年11月评聘为副教授。在工业工程与管理Top期刊《Industrial and Engineering Chemistry Research》等发表论文近20余篇(其中SCI一区5篇,SCI二区9篇)。主持完成国家自然科学基金项目1项、国家留学基金委面上项目1项、江西省自然科学基金项目2项、江西省教育厅科学技术研究项目2项、江西财经大学自然科学基金项目1项、作为主要成员参与完成国家自然科学基金项目3项(前三)、省部级项目5项。 | |
| 主讲课程:物流信息系统、物流与供应链管理等 | |
科研论文: [1] Lixin Tang, Shujun Jiang*. Rolling horizon approach for dynamic parallel machine scheduling problem with release times. Industrial and Engineering Chemistry Research, 2010, 49 (1): 381-389. (SCI 2区,工业工程与管理Top期刊) [2] Lixin Tang, Shujun Jiang*. The charge batching planning problem in steelmaking process using Lagrangian relaxation algorithm. Industrial and Engineering Chemistry Research, 2009, 48 (16): 7780-7787. ((SCI 2区,工业工程与管理Top期刊) [3] 蒋淑珺,钢铁企业批量计划及调度理论研究. 江西科学技术出版社,2013,12(135千字) [4] Shujun Jiang. Lagrangian relaxation for parallel machine batch scheduling with deteriorating jobs. International Conference on Management of e-Commerce and e-Government, 2011, 109-112. (EI 收录) [6]Zhilong Li, Shujun Jiang*, Fixed point theorems of nondecreasing order-Ciric-Lipschitz mappings in normed vector spaces without normalities of cones, Journal of Nonlinear sciences and Applications, 2017(10), 18-26. (SCI 2区) [7] Zhilong Li, Shujun Jiang*, Rade Lazovi´. On order-Lipschitz mappings in Banach spaces without normalities of involving cones, Journal of Nonlinear sciences and Applications, 2017(10), 27-33. (SCI 2区) [8] Shujun Jiang, Zhilong Li*, Shihua Luo. Fixed point theorems of set-valued mappings in partially ordered hausdorff topological spaces. Abstract and Applied Analysis, volume 2014, Article ID 232413. (SCI 2区) [9] Zhilong Li*, Shujun Jiang. Quasi-contractions restricted with linear bounded mappings in cone metric spaces. Fixed Point Theory and Applications,2014,87. (SCI 1区) [10] Zhilong Li*, Shujun Jiang. Common fixed point theorems of contractions in partial cone metric spaces over nonnormal cones. Abstract and Applied Analysis,volume 2014,Article ID 653841. (SCI 2区) [11] Shujun Jiang, Zhilong Li*. Nonlinear quasi-contractions in non-normal cone metric spaces. Fixed Point Theory and Applications,2014,165. (SCI 1区) [12] Zhilong Li*, Shujun Jiang. Correction: Nonlinear quasi-contraction in non-normal cone metric spaces. Fixed Point Theory and Applications,2014,196. (SCI 1区) [13] Zhilong Li, Shujun Jiang. On Fixed Point Theory of Monotone Mappings with respect to a partial order introduced by a vector functional in cone metric spaces. Abstract and Applied Analysis,volume 2013,Article ID 349305. (SCI 2区) [14] Shujun Jiang, Zhilong Li. Largest and least fixed point theorems of increasing mappings in partially ordered metric spaces. Fixed Point Theory and Applications,2013,74. (SCI 1区) [15] Shujun Jiang, Zhilong Li. Generalized contractions of rational type in ordered partial metric spaces. Abstract and Applied Analysis, volume 2013,Article ID 928017. (SCI 2区) [16] Shujun Jiang, Zhilong Li. Extensions of banach contraction principle to partial cone metric spaces over a non-normal solid cone. Fixed Point Theory and Applications,2013,250. (SCI 1区) | |
学术专著: 蒋淑珺,钢铁企业批量计划及调度理论研究. 江西科学技术出版社,2013,12 | |
科研项目: [1]铝工业电解-熔铸供应链调度问题研究 (71462015),排名1,国家自然科学基金,2015.01.01-2018.12.31 [2]有色金属企业内部供应链调度问题研究-以铝行业为例 (20151BAB201023),排名1,江西省自然科学基金项目,2015.12.20-2017.12.24 [3]铝工业多工序企业内部供应链调度问题研究 (GJJ150479),排名1,江西省教育厅科学技术研究项目,2016.01.01-2017.12.31 [4]美国密歇根州立大学访问学者,国家留学基金委面上项目(14万), 2016.09 – 2017.09 [5]具有恶化特征的新型调度问题研究 (GJJ12280),排名1,江西省教育厅科学技术研项目,2012.01.01-2014.12.31 [6]具有恶化特征的新型调度问题研究 (20114BAB211006),排名1,江西省自然科学基金项目,2012.01.01-2014.12.31 [7]新型批处理机调度研究 (0.2万),排名1,江西财经大学自然科学基金青年项目,2010.11.29-2012.12.31 [8]主体匹配意愿视角下直觉模糊双边匹配决策理论与方法研究 (71861015),排名2,国家自然科学基金,2019.01.01-2022.12.31 [9]考虑心理行为因素的双边匹配决策理论与方法研究 (71261007),排名2,国家自然科学基金,2012.08.17-2016.12.31 [10]基于动态数据与先验认知混杂驱动的高炉冶炼过程多尺度建模与优化 (61263014),排名3,国家自然科学基金,2012.09.01-2016.12.30 [11]不动点理论中的半序方法及其应用 (11561026),排名2,国家自然科学基金,2016.01.01-2019.12.31 | |
